
www.verifsudha.com	
	

1	

	
	
	
	
	

Constrained	Random		
Stimulus	quality	analysis	using	

Whitebox		
Functional	and	Statistical	coverage	

	
Author:	Anand	Shirahatti	
(anand@verifsudha.com)	

	
	
	
	
	
	
	

	
	

	

	

	

	

	

www.verifsudha.com	
	

2	

	
	
	
	

1	 CURIOSITY:	STIMULUS	QUALITY	ANALYSIS	TOOL	..	3	
2	 UART:	CASE	STUDY	..	4	
2.1	 UART:	QUICK	REFRESHER	..	4	
2.2	 STATISTICAL	COVERAGE	...	6	
2.2.1	 Primary	operations	...	6	
2.2.2	 Tests	idling	...	6	
2.2.3	 Configurations	..	7	
2.2.4	 FIFO	utilization	..	9	
2.2.5	 Interrupt	service	latency	...	10	
2.2.6	 Registers	reprogrammed	..	10	
2.2.7	 Some	actions	based	on	this	exploration:	..	10	

2.3	 REUSABLE	COVERAGE	MODELS	...	11	
2.4	 FUNCTIONAL	COVERAGE	AMPLIFIED	..	12	

3	 CONCLUSION	..	13	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

www.verifsudha.com	
	

3	

1 Curiosity:	Stimulus	quality	analysis	tool	
	
We	at	VerifSudha	have	created	a	tool	called	curiosity	by	exploring	various	facets	
of	how	 to	achieve	 functional	verification	quality.	You	can	 read	more	about	our	
journey	 through	100+	blogs	dedicated	 to	 functional	 verification	quality	 on	our	
website	(www.verifsudha.com).		
	
Curiosity	 can	 help	 you	 throughout	 the	 verification	 process	 but	 it	 can	 make	
significant	difference	in	helping	you	close	on	that	last	20	%	effectively.	There	by	
reduces	the	possibility	of	missing	on	those	hard	to	find	bugs.		
	
As	a	by-product	it	will	also	help	you	optimize	your	regressions	saving	you	time,	
compute	farm	resources,	engineering	resources	and	simulator	licenses.	
	

	
	
	
	
	
	

Figure:	Key	capabilities	of	curiosity	tool	
	
Curiosity	 helps	 you	 improve	 functional	 verification	 quality	 by	 measuring	 its	
effectiveness	using:	

• Statistical	 coverage:	 This	 is	 a	 unique	 feature	 offered	 by	 the	 tool.	 This	
allows	 you	 to	 find	out	 stimulus	 is	 doing	 its	 job	 sufficiently	 and	 relative	
distributions	are	inline	with	your	current	project	priorities	

• Functional	 Coverage:	 With	 advanced	 built-in	 functional	 coverage	
models	 and	 object	 oriented	 functional	 coverage	 based	 reuse	 you	 can	
quickly	 generate	 the	 functional	 coverage	 for	 wide	 variety	 of	

If you can’t measure it you can’t improve it.
 - Peter Drucker

www.verifsudha.com	
	

4	

requirements.	This	helps	you	 setup	 the	 coverage	 targets	 for	discovered	
holes	during	exploration	

• Closure:	 Tool	 supports	 flow	where	 coverage	planning,	 code	 generation	
and	coverage	results	analysis	can	be	done	in	single	view	minimizing	the	
possibility	of	items	falling	through	the	cracks	during	the	transformation.	
This	ensures	once	holes	is	captured	in	plan	its	bound	to	get	closed	

	
Curiosity	is	non-invasive.	It	does	not	affect	your	test	bench	or	RTL.	It	is	agnostic	
to	verification	methodology.	Even	Verilog	only	legacy	test	benches	can	utilize	all	
the	 capabilities.	 Any	 test	 bench	 running	 on	 simulator	 with	 SystemVerilog	
support	can	utilize	all	the	capabilities	of	tool.	

2 UART:	Case	study	
	
To	demonstrate	some	of	its	capabilities	we	did	a	simple	case	study	using	simple	
UART	test	bench.	Complete	UVM	test	bench	of	UART	is	selected	from	the	mentor	
graphic’s	verification	academy.	This	test	bench	is	released	under	apache	license.	
Anyone	with	verification	academy	account	can	download	it	from	their	website.		
	

2.1 UART:	Quick	Refresher	
	
You	can	skip	this	section	if	you	are	already	familiar	with	UART.		
	
UART	stands	for	Universal	Asynchronous	Receiver-Transmitter.	It’s	a	simple	full	
duplex	serial	communication	protocol.	The	speed	of	data	transfer	is	governed	by	
baud	rate	which	indicates	the	number	bits	per	second.		
	
Protocol	is	very	simple.	Protocol	data	transfer	unit	is	a	character.	Number	of	data	
bits	in	character	can	be	programmed	to	5-bits,	6-bits,	7-bits	or	8-bits.	
All	data	transfers	start	with	a	start	bit	represented	by	line	being	pulled	low	for	
duration	 of	 one	 bit.	 There	 on	 the	 pre-programmed	 number	 of	 data	 bits	 are	
transmitted.	 Followed	 by	 data	 bits	 an	 optional	 parity	 bit	 is	 transferred.	 Parity	
can	be	programmed	 to	be	even	or	odd.	Followed	by	optional	parity	 is	 the	stop	
bit,	which	again	pulls	the	line	high.	The	number	of	stop	bits	can	be	programmed	
to	either	one	or	two.		
	

Figure:	UART	packet	format	
	
Typical	UART	design	 contains	a	baud	 rate	generator,	 transmit	 channel,	 receive	
channel	and	control	&	status	interface.	Baud	rate	generator	generates	the	clock	

www.verifsudha.com	
	

5	

for	controlling	the	rate	of	data	transfer.		A	common	baud	rate	is	selected	from	set	
of	pre-defined	baud	rates	supported.	
	
Transmit	and	receive	channel	are	implemented	as	a	simple	FSM	for	transmission	
and	reception	of	start	bit,	data	bits	and	stop	bits.	Transmit	and	receive	side	also	
include	the	FIFOs	to	hold	multiple	characters.	This	allows	software	application	to	
program	multiple	characters	to	be	transmitted	or	received.		
	
Control	and	status	block	provides	the	ability	to	program	various	configurations	
discussed	 above	 and	 provides	 the	 status.	 Software	 programming	 interface	 for	
characters	 can	 be	 handled	 by	 software	 using	 either	 interrupt	 or	 polling	
operation.		
	
Early	days	UART	were	used	in	the	modems.	So	they	provided	the	additional	pins	
to	interact	with	the	modem	mainly	used	for	the	flow	control.	
	
	

	
Figure:	UART	Block	diagram	

	

www.verifsudha.com	
	

6	

Example	test	bench	is	typical	UVM	test	bench.	Test	bench	is	bundled	with	7	tests	
to	test	various	functionalities.		
	
Please	 note	 that	 this	 test	 bench	 and	 design	 are	 not	 real	 life	 example	 but	 the	
methods	demonstrated	are	applicable	to	real	life	designs	as	well.	
	

2.2 Statistical	coverage	
	
Following	 sections	 summarize	 the	 application	 of	 the	 some	 of	 the	 analytic	
concepts	discussed	above	using	the	curiosity	tool	to	the	UART	test	bench.	

2.2.1 Primary	operations	
	
Let’s	start	with	something	simple.		
	
UART’s	primary	functionality	is	transmitting	and	receiving	the	characters.	Every	
test	 irrespective	 of	 whether	 it’s	 focusing	 on	 feature	 or	 configurations	
verification,	it	should	do	some	primary	operations.		
	

	
Table:	Count	of	the	characters	transmitted	and	received	

	
If	 you	 look	 at	 the	 above	 table	 generated	 by	 the	 tool,	 there	 are	 4/7	 tests	 not	
transmitting	or	 receiving	 characters.	Tests	without	primary	operations	are	not	
really	complete	tests.		
	
For	example,	is	there	a	point	in	changing	baud	rate	(test:	baud_rate.log	in	table)	
and	not	doing	any	traffic?	Agreed	there	is	some	value	in	checking	if	the	baud	rate	
generator	 is	 working	 but	 in	 real	 life	 baud	 rate	 functionality	 is	 almost	 useless	
unless	we	can	transmit	and	receive	characters	with	changed	baud	rate.	What	do	
you	think?	
	
This	type	of	analysis	can	be	very	useful	where	you	want	to	figure	out	which	tests	
are	not	doing	the	primary	operations.		

2.2.2 Tests	idling	
	
Another	 view	 that	 confirms	 the	 same	 is	 percentage	 of	 total	 duration	DUT	was	
IDLE	in	entire	regressions.	The	current	UART	DUT	is	IDLE	for	94	%	of	duration	
of	entire	regression.	
	

www.verifsudha.com	
	

7	

	
Figure:	Pie	char	indicating	IDLE	and	BUSY	duration	in	regression	

	
There	 is	 also	per	 test	 IDLE	percentage	data	generated	by	analytics	 that	 can	be	
used	to	identify	the	tests	that	are	idling	the	most.	
	
This	 type	of	 insight	 is	very	useful	 for	 legacy	or	bulky	 test	benches.	Legacy	 test	
benches	may	have	hard	coded	delays.	Hard	coded	delays	may	mismatch	and	look	
bloated	when	 frequency	 targets	 are	 increased	 in	 current	 version	 compared	 to	
last.	

2.2.3 Configurations	
	
UART	 supports	multiple	 functional	 configurations.	 Let’s	 focus	on	 subset	 of	 key	
protocol	configurations.	They	are	number	of	data	bits	per	character,	parity	type	
and	number	of	stop	bits.		
	
We	would	like	the	regressions	to	focus	on	the	configurations	based	on	the	their	
relative	importance	to	the	application.	Depending	on	application	usage,	its	clear	
that	not	all	the	types	of	configurations	are	equally	important.	So	regressions	also	
should	reflect	the	same.	
	
Typically	 the	 configurations	 are	 randomized	 at	 the	 start	 of	 the	 test	 and	
programmed	 in	 to	 the	 control	 registers.	 There	 on	 design	 is	 exercised	 with	
stimulus.	 In	 some	 test	 cases	 sub-set	 of	 configuration	 parameters	 are	
reprogrammed	multiple	times	during	course	of	test	execution.		
	
In	 order	 to	 confirm	 the	 regressions	 are	 really	 focusing	 on	 the	 right	
configurations,	 we	 need	 insights	 in	 to	 per	 test	 usage	 of	 configurations	 and	
regression	 level	 configuration	 usage.	 Not	 just	 listing	 of	 unique	 configurations	
exercised	but	listing	of	it’s	accumulated	active	durations	as	well.	
	
Our	configuration	parameters	of	interest	are	located	in	LCR	registers	bits	0	to	5.	
These	 6	 bits	 of	 configurations	 lead	 to	 2	 **	 6	 =	 64	 unique	 combinations.	 Parity	
configuration	bits	 LCR[5:3]	 supports	 8	 combinations	 but	 only	 5/8	 are	 defined,	
3/8	are	not	defined.	RTL	defaults	to	no	parity	when	any	of	3/8	combinations	are	
programmed	but	still	functions	normally.		
	

IDLE:	1	

BUSY:0	

www.verifsudha.com	
	

8	

	
Table:	LCR	register	definition	

	
Through	 Curiosity	 tool	 analytics	 for	 complete	 regression,	 percentage	 active	
duration	of	each	configuration	is	plotted	as	pie	chart	below.		
	
Although	 limited	 listing	 is	shown	on	 left	hand	side	but	all	 the	64	combinations	
(<word	length>_<stop	bit>_<parity	type>)	have	been	covered.	Obviously	a	simple	a	
cross	coverage	would	tell	us	that.	But	it	would	not	indicate	in	overall	regression	
or	per	test	level	the	duration	for	which	each	configuration	was	active.	
	
	

	
Figure:	Pie	chart	of	percentage	active	duration	of	each	configuration	combination	
	

0_0_6	

0_1_2	

2_0_3	

1_1_2	

0_0_0	

2_1_6	

3_0_6	

2_1_4	

2_1_5	

2_1_2	

0_0_3	

2_1_0	

2_1_1	

www.verifsudha.com	
	

9	

From	this	pie	chart,	94.35	%	the	highest	slice	of	pie	is	for	configuration	with	all	
bits	of	LCR[5:0]	being	0	 indicated	by	 combination	0_0_0(circled).	This	maps	 to	
configuration:	5-bit	per	character,	no	parity	and	single	stop	bit.		
	
Now	 the	 key	 question,	 Is	 this	 configuration	 important	 enough	 to	 be	 active	 for	
94%	of	the	overall	regression	time?		
	
Answer	may	be	YES	or	NO.		
	
It	 is	 dependent	 on	 the	 targeted	usage.	 But	 analytics	 provides	 the	 clarity	 about	
where	you	are	investing	your	valuable	simulation	time	in	regression.	Time	is	one	
the	precious	commodity,	once	spent	will	never	come	back.	
	
We	 can	 also	 figure	 out	 which	 tests	 are	 spending	 how	 much	 time	 in	 each	
configuration?	Which	tests	are	dynamically	changing	configurations?	How	many	
times	have	they	changed	the	configuration?	
	

2.2.4 FIFO	utilization	
		
This	 UART	 design	 has	 FIFO	 in	 both	 transmit	 and	 receive	 path.	 FIFO	 depth	 is	
configured	to	value	16.		
	
FIFO	 utilization	 in	 overall	 regression	 is	 indicative	 of	 nature	 of	 traffic	 and	
provides	 some	 insights	 to	 designers	 about	 whether	 the	 FIFOs	 are	 sized	
optimally.		
	
We	 looked	 at	 the	 percentage	 duration	 for	 each	 of	 the	 transmit	 FIFO	 depth	
utilization	accumulated	over	all	the	7	tests.		
	
Following	table	on	left	hand	side	shows	utilization.	First	column	is	the	number	of	
entries	 used	 and	 second	 column	 is	 percentage	 of	 time	 FIFO	 stayed	 at	 this	
utilization	level.		
	
Just	beside	that	a	bar	graph	plotting	utilization	count	on	X-axis	and	percentage	
time	for	that	utilization	count	on	Y-axis.	
	

Table	&	Figure:	Showing	the	UART	transmit	side	FIFO	utilization	across	regression	

www.verifsudha.com	
	

10	

There	is	one	striking	observations	here.	96	%	of	simulation	time,	FIFO	is	empty.	
Utilization	for	different	FIFO	sizes	is	so	small	 in	comparison	to	empty	that	they	
are	not	even	visible	on	the	bar	graph.	
	
If	we	 had	 added	 only	 functional	 coverage	 or	 used	 the	 code	 coverage,	 it	would	
show	up	as	all	the	depths	being	covered	since	FIFO	has	become	FULL.	But	if	you	
look	at	the	percentage	of	overall	simulation	time	the	FIFO	was	full	is	just	about	
0.05	%.		

2.2.5 Interrupt	service	latency	
	
UART	has	IRQ	signal	to	request	interrupts	on	various	events	when	enabled.	In	
real	life	software	will	have	variable	latency	for	servicing	the	interrupts.	Same	
should	be	reflected	in	the	test	bench	as	well.	
	
Also	some	good	number	of	interrupts	should	be	generated	and	processed.	
Analytics	can	provide	insights	in	to	this	area.	Minimum,	maximum	and	average	
interrupt	processing	latency	and	total	number	of	interrupts	can	be	generated	to	
see	if	they	are	inline	with	the	expectations.	
	
	

2.2.6 Registers	reprogrammed	
	
Control	 registers	 are	 often	 classified	 in	 to	 one	 time	 programmable	 or	
dynamically	reprogrammable.	One	time	programmable	are	initialized	only	once	
after	 power	 on	 reset	 and	 there	 on	 they	 are	 not	 touched	 throughout	 the	
operation.	 While	 the	 reprogrammable	 registers	 can	 be	 reprogrammed	
dynamically	during	the	operation	of	device	at	appropriate	states.	
	
Also	 its	 not	 just	 reprogramming	 but	 it	 should	 also	 be	 reprogrammed	with	 the	
different	value	to	make	it	meaningful.	
	
Analytics	can	provide	a	quick	insight	in	to	how	many	times	each	of	the	registers	
has	been	programmed.		

2.2.7 Some	actions	based	on	this	exploration:	
	
• Setup	an	end	of	test	expectation	that	at	least	non-zero	traffic	count	is	must	in	

all	 the	 tests.	 Curiosity	 tool	 can	 generate	 such	 expectations	 and	 attach	 it	
automatically	 to	 all	 the	 tests	 or	 list	 of	 tests.	 When	 test	 fails	 to	 meet	 this	
expectation	error	or	warning	can	be	flagged	

• Tune	the	constraints	on	configuration	to	 improve	upon	the	configuration	of	
interest.	Reconfirm	through	analytics	that	its	really	taking	place.	In	fact	goals	
can	be	setup	in	the	curiosity	analytics	to	see	if	they	are	being	met	and	can	be	
tracked	through	the	trends	

• Traffic	patterns	need	improvement	to	see	better	FIFO	utilization	percentage.	
If	the	full	case	is	important	then	functional	coverage	on	duration	of	FULL	can	
be	setup.	Additionally	coverage	on	number	of	FIFO	full	and	empty	cycles	can	

www.verifsudha.com	
	

11	

be	created.	This	type	of	FIFO	utilization	cycling	can	help	bring	out	issues	like	
memory	 leaks.	 All	 this	 type	 of	 functional	 coverage	 can	 be	 easily	 generated	
from	the	tool	using	the	pre-defined	coverage	models	for	the	FIFO	

	

2.3 Reusable	coverage	models	
	
Let’s	 look	at	examples	of	how	reusable	coverage	models	 	 can	help	us	get	more	
insights.		
	
Reusable	 coverage	models	 are	 based	 on	 best-known	 verification	 practices	 and	
pattern	 of	 typical	 bugs	 escaped	 captured	 as	 coverage	 models.	 The	 knowledge	
base	is	continuously	updated	based	on	new	learning’s.	
	
Curiosity	tool	comes	bundled	with	the	many	built-in	coverage	models	that	can	be	
used	 right	 out	 of	 the	 box.	 You	 can	 customize,	 add,	 share	 and	 enforce	 your	
organization	specific	coverage	models	as	well	across	the	teams.		
	
Reusable	coverage	models	are	made	possible	through	object	oriented	functional	
coverage	 layering	support	added	 to	SystemVerilog	covergroup	construct	 in	 the	
tool.	
	
For	serial	communication	interfaces	following	are	some	of	the	available	built-in	
executable	knowledge	base.	Wherever	 ‘N’	 is	used	can	be	replaced	with	number	
that	makes	sense	for	your	application.	
	
We	 generated	 functional	 coverage	 for	 the	 following	 items	 and	 ran	 the	
regressions.	Following	table	summarizes	the	results.	
	
Sl.	No.	 Executable	knowledge	coverage	model	

type	
Coverage	 results	 in	 UART	
design	

1	 16(‘N’)	protocol	data	units	transmitted	
back	to	back	on	line	without	delay	
	
At	least	it	should	be	able	to	transmit	one	
FIFO	depth	worth	of	data	back		

Not	covered	

2	 16(‘N’)	protocol	data	units	received	back	
to	back	on	line	without	delay	

Not	covered	

3	 Special	patterns	being	transmitted	back	to	
back	for	100(‘N’)	times	

• All	bits	in	character	0s	
• All	bits	in	character	1s	

	
Serial	communication	designs	have	
weakness	for	the	data	bits	being	control	
symbol	values	

Not	covered	

4	 Coverage	model	to	check	if	interrupts	are	
generated	when	they	are	masked	

Not	generated	when	
masked:	

www.verifsudha.com	
	

12	

	
Simple	interrupt	mask	implementation	
mistakes	lead	to	unexpected	interrupts.	
Sometimes	in	real	application	these	can	
lead	to	unintended	wake	of	software	
leading	to	additional	power	consumption.		

• rx_int		
• rx_error		

	
Generated	when	
masked:	

• ls_int	generated	
when	masked	

• ms_int	generated	
when	masked	

• tx_int	generated	
when	masked	

	
5	 Different	types	of	line	errors	taking	place	

at	different	level	of	FIFO	utilization	
• Break	error	not	

injected	
• Parity	and	framing	

errors	are	injected	
at	various	level	of	
FIFO	utilization	

Table:	Functional	coverage	results	summary	for	executable	knowledge	base	items	
	

2.4 Functional	coverage	amplified	
	
There	 are	 many	 low	 level	 routines	 to	 help	 amplify	 the	 capabilities	 of	 the	
functional	coverage	construct.		
	
A	bin	definition	and	its	reuse	for	the	cover	points	 is	one	of	 them.	Often	the	bin	
definitions	 are	 not	 appropriately	 parameterized	 or	 coded	 at	 sufficient	
granularity.	 	While	 parameterization	 affects	 the	 portability,	 lack	 of	 granularity	
affects	the	quality	of	the	functional	coverage.	
	
Imagine	 a	 cover	 point	 on	 address	 hole	 range	 with	 single	 bin	 for	 the	 entire	
address	 range.	 What	 values	 does	 such	 cover	 point	 provide?	 So	 right	 bin	
definition	 is	 extremely	 important	 to	 extract	 the	 full	 value.	These	bin	definition	
reuse	 routines	makes	 this	 task	 simpler.	 Now	 bins	 can	 be	 reused	 across	 cover	
points	either	within	covergroup	or	across	the	covergroup.	
	
Sl.	
No.	

Simple	bin	API	 Coverage	results	in	
UART	design	

1	 Interrupt	enable	register	(IER[3:0])	transitions	:	
get_bins_single_bit_transition_custom()	is	reused	
for	all	the	4-bits	of	IER	register.	
bins	b_transition_1_0_1_0	=	(1	=>	0	=>	1	=>	0);	

Not	covered	
	
None	 of	 the	 bits,	
transition	is	seen	

2	 Slave	address	range	decode	error.	Current	APB	
address	bus	supports	32	byte	address.	8/32	are	
used.	9-31	byte	address	is	hole.	Need	to	cover	both	
read	and	write	access	to	this	hole	generates	slave	
error.	

Not	covered	
	
Neither	 Read	 or	
Write	 issued	 to	
byte	 address	 hole	

www.verifsudha.com	
	

13	

get_min_max_intermediate_equal_ranges_bin_list(9,	
31,	3)	
Automatically	generates	the	following	bin	ranges:	
Note	that	start(9)	and	end(31)	corner	cases	are	
covered	with	bin.	
	 	 		bins	bin_value_9	=	{9};	
	 	 		bins	bin_value_31	=	{31};	
	 	 		bins	bin_range_10_16	=	{[10:16]};	
	 	 		bins	bin_range_17_23	=	{[17:23]};	
	 	 		bins	bin_range_24_30	=	{[24:30]};	
	

9-31	 while	 valid	
address	 0-8	 is	
accessed	 multiple	
times	

Table:	Functional	coverage	summary	for	items	built	using	bin	definition	reuse	

3 Conclusion	
	
Stimulus	quality	analysis	tool	like	curiosity	enables	you	to	get	quick	insights	and	
giving	instantaneous	feedbacks	about	your	functional	verification	quality.		
	
	
	
	
	
	

For	more	information,	questions	or	demo	write	to:	
anand@verifsudha.com	

	
Challenge	us:		

We	can	provide	results	similar	to	this	case	study	on	your	
DUT	within	5	business	days	using	our	APPs	

	
	
	

©	Copyright	2018	VerifSudha	Technologies	Pvt.	Ltd.	

	

www.verifsudha.com	

