
www.verifsudha.com	 1	

	

	
	
	

High-level	specification	model	based		
Functional	coverage	generation	

	
(With	case	study	of	USB	Power	delivery	protocol	layer	coverage)	

	
	

Author:	Anand	Shirahatti	
(anand@verifsudha.com)	

	
	
	
	
	
	
	

Intent	is	the	seed	of	manifestation	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

www.verifsudha.com	 2	

	
	
	

1	 Introduction	...	3	
2	 How	is	this	approach	different?	...	4	

3	 Making	intent	executable	..	4	

4	 Benefits	..	5	
5	 Architecture	..	6	
5.1	 Executable	coverage	plan	...	7	
5.2	 High-level	specification	modeling	...	7	
5.3	 Information	source	...	8	
5.4	 SystemVerilog	Coverage	API	in	Python	..	8	
5.4.1	 Limitations	of	SystemVerilog	Covergroup	..	8	
5.4.2	 Coverage	API	Layering	..	9	
5.4.3	 Implementation	..	10	
5.4.4	 Structure	of	user	interface	...	11	

5.5	 Source	information	...	12	
6	 Summary:	...	13	
7	 USB	Power	delivery	protocol	layer	–	Case	study	...	14	
7.1	 Refresher	..	14	
7.2	 Protocol	layer	functional	coverage	challenges	...	16	
7.3	 Functional	coverage	items	for	case	study	...	16	
7.4	 USB	power	delivery	specification	information	modeling	17	
7.4.1	 Message	modeling	...	18	
7.4.2	 Event	modeling	...	19	
7.4.3	 Protocol	sequence	modeling	...	20	

7.5	 Executable	coverage	plan	...	24	
7.5.1	 Global	configuration	...	24	
7.5.2	 Item	1:	Cover	all	transmitted	protocol	messages	..	25	
7.5.3	 Item	2:	All	received	protocol	messages	..	26	
7.5.4	 Item	3:	Some	key	events	during	message	transmission	27	
7.5.5	 Item	4:	For	all	transmitted	messages	getting	all	possible	valid	responses	..	29	
7.5.6	 Item	5:	For	all	transmitted	messages	unexpected	acknowledgement	30	
7.5.7	 Item	6:	Power	negotiation	sequence	...	32	
7.5.8	 Item	7:		Timeout	error	injection	within	power	negotiation	sequence	33	

8	 Conclusion	..	35	

	
	
	
	
	
	
	
	
	
	

www.verifsudha.com	 3	

1 Introduction	
	
We	were	presenting	our	whitebox	functional	and	statistical	coverage	generation	
solution,	one	of	the	engineer	asked,	can	it	take	standard	specifications	as	input	
and	generate	the	functional	coverage	from	it?		
	

	
	
Figure	1:	Specification	to	functional	coverage	magic	possible?	
	
I	replied	“No”.	It	cannot.	
	
But	then	after	the	presentation,	questioned	myself	as	to,	why	not?		
	
No,	no	still	not	brave	enough	to	parse	the	standard	specifications	use	natural	
language	processing	(NLP)	to	extract	the	requirements	and	generate	the	
functional	coverage	from	it.	But	we	have	taken	first	step	in	this	direction.	It’s	a	
baby	step.	May	be	some	of	you	might	laugh	at	it.	
	
We	are	calling	it	as	high	level	specification	model	based	functional	coverage	
generation.	It	has	some	remarkable	advantages.	As	every	time,	I	felt	this	is	“the”	
way	to	write	functional	coverage	from	now	on	J		
	
Idea	is	very	simple.	I	am	sure	some	of	you	might	have	already	doing	it	as	well.	
Capture	the	specification	in	form	of	data	structures.	Define	bunch	of	APIs	to	
filter,	transform,	query	and	traverse	the	data	structures.	Combine	these	
executable	specifications	with	our	python	APIs	for	SystmVerilog	functional	
coverage	generation.	Voila,	poor	man’s	specification	to	functional	coverage	
generation	is	ready.				
	
Yes,	you	need	to	learn	scripting	language	(python	in	this	case)	and	re-implement	
some	of	the	specification	information	in	it.		That’s	because	SystemVerilog	by	
itself	does	not	have	necessary	firepower	to	get	it	all	done.	Scared?	Turned	off?	No	
problem.	Nothing	much	is	lost.	Please	stop	reading	from	here	and	save	your	time.		
	
Adventurers	and	explorers	surviving	this	hard	fact	please	hop	on.	I	am	sure	you	
will	fall	in	love	with	at	least	one	thing	during	this	ride.	
		
	

www.verifsudha.com	 4	

2 How	is	this	approach	different?	
	
How	is	this	approach	different	from	manually	writing	coverage	model?	This	is	a	
very	important	question	and	was	raised	by	Faisal	Haque.		
	
There	are	multiple	advantages,	which	we	will	discuss	later	in	the	article.	In	my	
view	single	biggest	advantage	is	making	the	coverage	intent	executable	by	truly	
connecting	the	high-level	model	of	specifications	to	functional	coverage.	No	we	
are	not	talking	about	just	putting	specification	section	numbers	in	coverage	plan	
we	are	talking	about	really	capturing	the	specification	and	using	it	for	generation	
of	functional	coverage.	
	
Let	me	set	the	expectations	right,	this	approach	will	not	figure	out	your	intent.	
The	idea	is	about	capturing	and	preserving	human	thought	process	behind	the	
functional	coverage	creation	in	executable	form.	So	that	it	can	be	easily	repeated	
when	things	change.	That’s	all.	It’s	a	start	and	first	step	towards	specifications	to	
functional	coverage	generation.	
	
Typically	functional	coverage	is	implemented	as	set	of	discrete	independent	
items.	The	intent	and	its	connection	to	specifications	are	weak	to	non-existent	in	
this	type	of	implementation.	Most	of	the	intent	gets	either	left	behind	in	the	word	
of	excel	plan	where	it	was	written	or	in	the	form	of	comments	in	the	code,	which	
cannot	execute.			

3 Making	intent	executable	
	
Why	capturing	intent	in	executable	form	is	important?	
	
We	respect	and	value	the	human	intelligence.	Why?	Is	it	only	for	this	emotion	
reason?	No.	Making	human	intelligence	executable	is	first	step	to	artificial	
intelligence.	
	
Ability	to	translate	the	requirements	specification	into	coverage	plan	is	highly	
dependent	on	the	experiences	and	depth	of	specification	understanding	of	the	
engineer	at	the	moment	of	writing	it.	If	its	not	captured	in	the	coverage	plan	it’s	
lost.		Even	the	engineer	who	wrote	the	functional	coverage	plan	may	find	it	
difficult	to	remember	why	exactly	certain	cross	was	defined	after	6	months.		
	
Now	this	can	become	real	challenge	during	the	evolution	and	maintenance	of	the	
functional	coverage	plan	as	the	requirements	specifications	evolve.	Engineer	
doing	incremental	updates	may	not	have	luxury	of	the	time	as	the	earlier	one	
had.	Unless	the	intent	is	executable	the	quality	of	the	functional	coverage	will	
degrade	over	period	of	time.	
	
Now	if	you	are	doing	this	design	IP	for	only	one	chip	and	after	that	if	you	are	
throwing	it	away	this	functional	coverage	quality	degradation	may	not	be	such	a	
big	concern.		
	

www.verifsudha.com	 5	

Let’s	understand	this	little	further	with	example.	In	the	USB	Power	delivery	case	
study	you	will	be	able	to	find	more	details	about	this	example.	USB	power	
delivery	supports	multiple	specification	revisions.	Let’s	say,	we	want	to	cover	all	
transmitted	packets	for	revision	x.	
	
In	manual	approach	we	will	discretely	list	protocol	data	units	valid	for	revision	x.		
For	this	listing	you	scan	the	specifications,	identify	them	and	list	them.	Only	way	
to	identify	them	in	code	as	belonging	to	revision	x	is	either	through	covergroup	
name	or	comment	in	the	code.		
	
In	the	new	approach	you	will	be	able	to	operate	on	all	the	protocol	data	units	
supported	by	revision	x	as	a	unit	through	APIs.	This	is	much	more	meaningful	to	
readers	and	makes	your	intent	executable.	As	we	called	out,	our	idea	is	to	make	
coverage	intent	executable	to	make	it	adaptable.	Let’s	contrast	both	approaches	
with	another	example.	
	
For	example,	let’s	say	you	want	to	cover	two	items:	

• All	packet	transmitted	by	device	supporting	revision	2.0		
• Intermediate	reset	while	all	packet	transmitted	by	device	supporting	

revision	2.0	
	

If	you	were	to	write	discrete	coverage,	you	would	have	sampled	packet	type	and	
listed	all	the	valid	packet	types	of	revision	2.0	as	bins.	Since	bins	are	not	reusable	
in	SystemVerilog	you	would	do	copy	and	paste	them	across	these	two	
covergorups.	
	
Now	imagine,	if	you	missed	a	packet	type	during	initial	specification	scan	or	
errata	containing	one	more	packet	type	came	out	later,	you	need	to	go	back	and	
add	this	new	type	at	two	different	places.		
	
But	with	this	new	approach,	as	soon	as	you	update	the	specification	data	
structure	with	new	type	you	are	done.	All	the	queries	requesting	revision	x	will	
automatically	get	updated	information.	Hence	all	the	functional	coverage	
targeted	to	revision	x	will	be	automatically	updated.			
	
Remember	initially	it	may	be	easy	to	spot	two	places	where	the	change	is	
required.	But	when	you	have	hundreds	of	covergroups	it	will	be	difficult	to	
reflect	the	incremental	changes	to	all	the	discrete	covergroups.	It	will	be	even	
more	difficult	when	new	engineer	has	to	do	the	update	without	sufficient	
background	on	the	initial	implementation.	
	

4 Benefits	
	
What	are	the	benefits	of	this	approach?	
	
With	high-level	specification	model	based	functional	coverage	the	abstraction	of	
thought	process	of	writing	coverage	moves	up	and	it	frees	up	brain	bandwidth	to	

www.verifsudha.com	 6	

identify	more	items.	This	additional	brain	bandwidth	can	significantly	help	
improve	the	quality	of	functional	coverage	plan	and	hence	the	overall	quality	of	
functional	verification.	
	
Benefits	of	high-level	model	based	functional	coverage	generation:	

• Intent	gets	captured	in	executable	form.	Makes	it	easy	to	maintain,	
update	and	review	the	functional	coverage	

• Executable	intent	makes	your	coverage	truly	traceable	to	specification.	
Its	much	better	than	just	including	the	specification	section	numbers	
which	leads	to	more	overhead	than	benefit	

• Its	easy	to	map	the	coverage	from	single	specification	from	different	
components	points	of	view	(Ex:	USB	device	or	host	point	of	view	or	PCIe	
root	complex	or	endpoint	or	USB	Power	delivery	source	or	sink	point	of	
view)	from	single	specification	model	

• Easy	to	define	and	control	the	quality	of	coverage	controlled	by	the	level	
of	details	in	the	coverage	required	for	each	feature	(Ex:	Cover	any	
category,	cover	all	categories	or	cover	all	items	in	each	category)	

• Easy	to	support	and	maintain	multiple	versions	of	the	specifications	
• Dynamically	switch	the	view	of	the	coverage	implemented	based	on	the	

parameters	to	ease	the	analysis	(Ex:		Per	speed,	per	revision	or	for	
specific	mode)	

5 Architecture	
	
How	to	go	about	building	high-level	specification	model	based	functional	
coverage?	
	
First	let’s	understand	the	major	components.	Following	is	the	block	diagram	of	
the	high-level	specification	model	based	functional	coverage.	We	will	briefly	
describe	role	and	functionality	of	each	of	these	blocks.	This	diagram	only	shows	
basic	building	blocks.		
	
Later	we	will	look	at	the	case	studies	where	we	will	see	these	blocks	in	action	
making	their	explanations	more	clear.	It	will	also	guide	how	to	implement	these	
blocks	for	your	project	as	well.	
	
	

www.verifsudha.com	 7	

	
	
Figure	2:	Block	diagram	of	high-level	specification	model	based	functional	
coverage	generation	
	
	

5.1 Executable	coverage	plan	
	
Executable	coverage	plan	is	the	block	that	actually	hosts	all	the	functional	
coverage	items.	It’s	coverage	plan	and	its	implementation	together.		
	
It	does	the	implementation	of	functional	coverage	items	by	connecting	the	high-
level	specification	model,	source	of	information	and	SV	coverage	APIs.	The	APIs	
utilized,	specification	information	accessed	and	relations	of	various	items	
utilized	preserves	the	intent	in	executable	form.		
	
User	still	specifies	the	intent	of	what	to	cover.		
	
It	won’t	read	your	mind	but	you	will	be	able	to	express	your	thoughts	at	higher	
level	of	abstractions	and	more	closer	or	specifications	and	in	highly	
programmable	environment	that	is	much	more	powerful	that	SystemVerilog	
alone.	
	
	

5.2 High-level	specification	modeling	
	
This	block	is	combination	of	set	of	data	structures	and	APIs.		
	
Data	structures	capture	high-level	information	from	the	specifications.	These	
data	structures	can	be	capturing	information	about	properties	of	different	
operations,	state	transition	tables	representing	the	state	machines,	information	

www.verifsudha.com	 8	

about	timers	as	to	when	they	start,	stop,	timeout	or	graphs	capturing	various	
forms	of	sequences.	Idea	here	is	capture	the	relevant	information	about	the	
specification	that	is	required	for	the	definition	and	implementation	of	the	
functional	coverage.		Choose	the	right	form	of	data	structures	that	fit	the	
purpose.	These	data	structures	will	vary	from	domain	to	domain.	
	
APIs	on	the	other	hand	process	the	data	structures	to	generate	different	views	of	
the	information.	APIs	can	be	doing	filtering,	combinations,	permutations	or	just	
ease	access	to	the	information	by	hiding	the	complexity	of	data	structures.		There	
is	some	level	of	reuse	possible	for	these	APIs	across	various	domains.	
	
Using	these	set	of	data	structures	and	APIs	now	we	are	ready	to	translate	the	
coverage	plan	to	implementation.		
	

5.3 Information	source	
	
Specification	data	structures	may	define	the	structure	of	operations	but	to	cover	
it,	we	need	to	know	how	to	identify	the	completion	of	operation,	what	is	the	type	
operation	of	operation	completed	and	current	values	of	its	properties	etc.	
	
Information	source	provides	the	abstraction	to	bind	the	specification	
information	to	either	test	bench	or	design	RTL	to	extract	the	actual	values	of	
these	specification	structures.	This	abstraction	provides	the	flexibility	to	easily	
switch	the	source	of	coverage	information.		
	
Bottom	line	stores	information	about	sources	that	are	either	sampled	for	
information	or	provides	triggers	to	help	decide	when	to	sample.	
	

5.4 SystemVerilog	Coverage	API	in	Python	
	
Why	do	we	need	these	APIs,	why	can’t	we	just	directly	write	it	in	SystemVerilog	
itself?	
	
That’s	because	SystemVerilog	covergroup	has	some	limitations,	which	prevent	
the	ease	of	reuse.		

5.4.1 Limitations	of	SystemVerilog	Covergroup	
	
SystemVerilog	 functional	 covergroup	 construct	 has	 some	 limitations,	 which	
prevents	its	effective	reuse.	Some	of	the	key	limitations	are	following:	
• Covergroup	construct	 is	not	completely	object	oriented.	 It	does	not	support	

inheritance.	What	it	means	is	you	cannot	write	a	covergroup	in	base	class	and	
add,	update	or	modify	its	behavior	through	derived	class.	This	type	of	feature	
is	 very	 important	 when	 you	 want	 to	 share	 common	 functional	 coverage	
models	 across	 multiple	 configurations	 of	 DUT	 verified	 in	 different	 test	
benches	and	to	share	the	common	functional	coverage	knowledge	

www.verifsudha.com	 9	

• Without	right	bins	definitions	the	coverpoints	don’t	do	much	useful	job.	The	
bins	 part	 of	 the	 coverpoint	 construct	 cannot	 be	 reused	 across	 multiple	
coverpoints	either	within	the	same	covergroup	or	in	different	covergroup		

• Key	 configurations	 are	defined	 as	 crosses.	 In	 some	 cases	 you	would	 like	 to	
see	different	scenarios	taking	place	in	all	key	configurations.	But	there	is	no	
clean	way	to	reuse	the	crosses	across	covergroups	

• Transition	 bin	 of	 coverpoints	 to	 get	 hit	 are	 expected	 to	 complete	 defined	
sequence	 on	 successive	 sampling	 events.	 There	 is	 no	 [!:$]	 type	 of	 support	
where	 the	 transition	 at	 any	 point	 is	 considered	 as	 acceptable.	 This	 makes	
transition	bin	implementation	difficult	on	relaxed	sequences		
	

5.4.2 Coverage	API	Layering	
	

At	 VerifSudha,	 we	 have	 implemented	 a	 Python	 layer	 that	 makes	 the	
SystemVerilog	 covergroup	 construct	 object	 oriented	 and	 addresses	 all	 of	 the	
above	 limitations	 to	make	 the	 coverage	writing	 process	more	 productive.	 Also	
the	 power	 of	 python	 language	 itself	 opens	 up	 lot	 more	 configurability	 and	
programmability.		
	
Based	 on	 this	 reusable	 coverage	 foundation	we	 have	 also	 built	many	 reusable	
high	level	coverage	models	bundled	which	make	the	coverage	writing	easier	and	
faster.	Great	part	is	you	can	build	library	of	high-level	coverage	models	based	on	
best-known	verification	practices	of	your	organization.	
	
These	 APIs	 allows	 highly	 programmable	 and	 configurable	 SystemVerilog	
functional	coverage	code	generation.		
	
Fundamental	idea	behind	all	these	APIs	is	very	simple.		
	

	
Figure	3:	SV	Coverage	API	layering	

	
We	have	implemented	these	APIs	as	multiple	layers	in	python.	
	

www.verifsudha.com	 10	

Bottom	most	layer	is	basic	python	wrappers	through	which	you	can	generate	the	
functional	coverage	along	with	the	support	for	object	orientation.	This	provides	
the	foundation	for	building	easy	to	reuse	and	customize	high-level	functional	
coverage	models.	This	is	sufficient	for	the	current	case	study.	
	
RTL	elements	coverage	models	cover	various	standard	RTL	logic	elements	from	
simple	expressions,	CDC,	interrupts	to	APPs	for	the	standard	RTL	element	such	
as	FIFOs,	arbiters,	register	interfaces,	low	power	logic,	clocks,	sidebands.		
	
Generic	functionality	coverage	models	are	structured	around	some	of	the	
standard	high-level	logic	structures.	For	example	did	interrupt	trigger	when	it	
was	masked	for	all	possible	interrupts	before	aggregation.	Some	times	this	type	
of	coverage	may	not	be	clear	from	the	code	coverage.	Some	of	these	are	also	
based	on	the	typical	bugs	found	in	different	standard	logic	structures.		
	
At	highest-level	are	domain	specific	overage	model.	For	example	many	high-
speed	serial	IOs	have	some	common	problems	being	solved	especially	at	physical	
and	link	layers.	These	coverage	models	attempt	to	model	those	common	
features.	
	
All	these	coverage	models	are	easy	to	extend	and	customize	as	they	are	built	on	
object	oriented	paradigm.	That’s	the	only	reason	they	are	useful.	If	they	were	not	
easy	to	extend	and	customize	they	would	have	been	almost	useless.	
	

5.4.3 Implementation	
	
• Backbone	of	these	APIs	is	data	structure	for	the	SystemVerilog	covergroups	

modeled	as	list	of	dictionaries.	Each	of	the	covergroup	being	a	dictionary	
made	up	of	list	of	coverpoint	dictionaries	and	list	of	cross	dictionaries.	Each	
of	the	coverpoint	and	cross	dictionaries	contain	list	of	bin	dictionaries	

• These	data	structures	are	combined	with	simple	template	design	pattern	to	
generate	the	final	coverage	code	

• Using	layer	of	APIs	on	these	data	structure	additional	features	and	limitations	
of	SystemVerilog	covergroup	are	addressed	

• Set	of	APIs	provided	to	generate	the	reusable	bin	types.	For	example	if	you	
want	to	divide	an	address	range	between	N	equal	parts,	you	can	do	it	through	
these	APIs	by	just	providing	the	start	address,	end	address	and	number	of	
ranges	

• There	are	also	bunch	of	object	types	representing	generic	coverage	models.	
By	defining	the	required	properties	for	these	object	types	covergroups	can	be	
generated	

• Using	python	context	managers	the	covegroup	modeling	is	eased	off	for	the	
user	

	
Any	user	defined	SystemVerilog	code	can	co-exist	with	these	APIs.	This	enables	
easy	mix	of	generated	and	manually	written	code	where	APIs	fall	short.	
	

www.verifsudha.com	 11	

	
Figure	4:	What	to	expect	from	APIs	
	

5.4.4 Structure	of	user	interface	
	
All	the	APIs	essentially	work	on	the	object.	Global	attributes	can	be	thought	of	as	
applicable	to	entire	covergroup.	For	example	if	you	specified	bins	at	the	global	
level	it	would	apply	to	all	the	coverpoints	of	the	covergroup.	Not	only	the	
information	required	for	coverage	generation	but	also	description	and	tracking	
information	can	be	stored	in	the	corresponding	object.		
	
This	additional	information	can	be	back	annotated	to	simulator	generated	
coverage	results	helping	you	correlate	your	high-level	python	descriptions	to	
final	coverage	results	from	regressions	easily.	
	
Also	the	APIs	support	mindmaps	and	Excel	file	generations	to	make	it	easy	to	
visualize	the	coverage	plan	for	reviews.	
	
	

www.verifsudha.com	 12	

	
Figure	5:	Structure	of	user	interface	for	objects		
	

5.5 Source	information	
	
Covergroups	require	what	to	sample	and	when	to	sample.	
	
This	is	the	block	where	you	capture	the	sources	of	information	for	what	to	
sample	and	when	to	sample.	It’s	based	on	very	simple	concept	like	Verilog	
macros.	All	the	coverage	implementation	will	use	these	macros,	so	that	it	
abstracts	the	coverage	from	statically	binding	to	source	of	the	information.		
	
Later	these	macros	can	be	initialized	with	the	appropriate	source	information.		
	

	
Snippet	1:	Specifying	source	information		
	
This	flexibility	allows	using	information	source	from	either	between	the	RTL	and	
test	bench.	Easily	be	able	to	switch	between	them	based	on	need.	
	
Following	code	snippets	showcase	how	covergroup	implementation	for	simple	
read/write	and	address	can	be	done	using	either	RTL	design	or	test	bench	
transactions.		
	

www.verifsudha.com	 13	

	
Snippet	2:	Coverage	generated	using	testbench	transaction	
	
Coverpoints	in	snippet	2	are	sampling	the	register	read	write	transaction	object	
(reg_rd_wr_tr_obj).	Sampling	is	called	on	every	new	transaction	
	

	
Snippet	3:	Coverage	generated	using	DUT	signals	
	
Coverpoints	in	snippet	3	are	sampling	the	RTL	signals	to	extract	the	read/write	
operation	and	address.	Sampling	is	called	on	every	new	clock	qualified	by	
appropriate	signals.	

6 Summary:	
	
Functional	 coverage	 is	 one	 of	 the	 last	 lines	 of	 defense	 for	 verification	 quality.	
Being	 able	 to	 repeatedly	 do	 a	 good	 job	 and	 do	 it	 productively	 will	 have	
significant	impact	on	your	quality	of	verification.	
	
Initially	it	may	seem	like	lot	of	work,	you	need	to	learn	a	scripting	language	and	
learn	different	techniques	of	modeling.	But	pay	off	will	not	only	for	the	current	
project	 but	 throughout	 the	 lifetime	 of	 your	 project	 by	 easing	 the	maintenance	
and	allowing	you	to	deliver	the	higher	quality	consistently.	
	
	
	
	
	
	
	
	
	

www.verifsudha.com	 14	

7 USB	Power	delivery	protocol	layer	–	Case	study	
	
Before	we	jump	into	implementation	details,	here	is	a	very	short	refresher	with	
only	limited	the	details	relevant	for	this	case	study.	
	

7.1 Refresher	
	
Dynamic	negotiable	power	is	basic	idea	behind	the	USB	–power	delivery.	
Obviously	for	negotiation	to	take	place	we	need	two	entities.	They	are	source	
and	sink.	
	

	
	
	
Provider	(SOURCE)	supplies	power	and	Consumer	(SINK),	uses	the	supplied	
power.	A	simple	provider	could	be	wall	outlet	or	laptop	and	simple	sink	could	be	
mobile	or	tablet.		
	
Power	negotiated	can	be	up	to	100Watts.	The	cables	have	to	be	designed	to	
support	that.	Cables	are	electronically	marked	as	well	to	specify	their	
capabilities.		
	
Refined	USB	connector	called	type-c	is	gaining	popularity,	used	for	the	USB	
power	delivery	support.	There	two	additional	wires	added	in	the	connector	to	
support	the	protocol.		
	
On	these	two	additional	wires	USB	power	delivery	runs	a	protocol	stack	made	up	
of	following	three	layers:	

• Physical	layer		
• Protocol	layer		
• Policy	engine.	

	
We	will	look	in	to	briefly	protocol	layer	only.	

www.verifsudha.com	 15	

	
Now	protocol	itself	is	very	simple.	It’s	half	duplex.	Half,	yes,	that’s	right.	
	
It’s	made	up	of	bunch	of	messages.	There	can	be	only	one	outstanding	message	
between	the	pair	of	communicating	devices.	Every	message	has	to	be	
acknowledged	for	successful	reception.	Only	after	that	next	message	is	
transmitted.	There	are	three	categories	of	messages.	They	are	CONTROL,	DATA	
and	EXTENDED.	
	

	
	
Let’s	look	at	the	simple	protocol	sequence.	
	
In	very	simple	terms,	transmitter	sends	request,	wait	for	acknowledgement.	
Receiver	sends	acknowledgement.	
	
Followed	by	that	receiver	sends	the	response	and	waits	for	the	
acknowledgement	from	request	transmitter.	That’s	it.	
	

	
	
Different	timers	govern	maximum	wait	time	for	the	various	acknowledgement	
and	responses.	
	

www.verifsudha.com	 16	

	
	

7.2 Protocol	layer	functional	coverage	challenges	
	
There	are	three	challenges	here:	

• Multiple	specification	revision	support	(Rev	2.0	and	Rev	3.0)	
• Protocol	has	multiple	participants:	Source,	Sink,	Cable	plug,	Source/Sink	

(DRP)	
	
There	are	significant	differences	between	revision	2.0	and	3.0.	EXTENDED	
category	of	messages	is	added	only	in	revision	3.0.		
	
When	you	write	coverage	model	SOURCE	and	SINK	are	like	mirror	images.	What	
is	covered	as	transmit	for	one	needs	to	covered	as	receive	for	the	other.		

7.3 Functional	coverage	items	for	case	study	
	
Now	let’s	pick	some	items	to	cover	and	see	how	they	would	look	like	in	high-
level	modeling	based	functional	coverage.	
	
Picking	rainbow	of	simple	atomic	items,	simple	sequence	and	complex	
sequences:	
	
Sl.	No.	 Coverage	item	description	
1	 All	transmitted	protocol	messages	
2	 All	received	protocol	messages	
3	 Some	key	events	during	message	transmission	
4	 For	all	transmitted	messages	getting	all	possible	valid	responses	
5	 For	all	transmitted	messages	unexpected	acknowledgement	received	
6	 Power	negotiation	sequence	
7	 Timeout	error	injection	within	power	negotiation	sequence	

Table	1:	Selected	functional	coverage	items	for	case	study	
	
For	all	these	items	let’s	demonstrate	how	all	the	benefits	of	high-level	model	
based	functional	coverage	promised	can	be	achieved.	
	
Now	let’s	jump	into	details	of	implementation	starting	with	the	specification	
modeling	of	the	USB	power	delivery	first.	
	

www.verifsudha.com	 17	

7.4 USB	power	delivery	specification	information	modeling	
	
First	thing	we	need	to	do	is	model	the	specification	details.		
	
We	are	showcasing	limited	items	modeling	here	to	balance	between	the	details	
and	ease	of	demonstrating	concepts.		
	
We	will	focus	only	on	the	details	of	the	specification	required	for	implementing	
the	items	we	have	picked	in	section	7.3.	
	
Here	is	how	we	will	go	about	describing	the	implementation	of	specification	
modeling.	We	will	first	show	some	mindmaps	for	high-level	view	of	information	
captured	and	then	show	the	corresponding	implementation	in	python	for	
reference.			
	
High-level	specification	information	modeled	looks	as	following.		
	
	

	
Mindmap	1:	Top	level	view	of	high-level	specification	information	items	captured	
	
We	have	captured	the	all	the	three	categories	of	messages,	some	important	
events,	information	about	timers	and	protocol	sequences	are	captured	as	graphs.	
We	will	keep	going	deeper	in	each	of	these	nodes	to	see	how	they	are	
implemented.	
	
	

www.verifsudha.com	 18	

7.4.1 Message	modeling	
	
Let’s	go	first	level	deep	in	to	the	message	modeling.	There	are	three	categories	of	
messages	modeled:	control,	data	and	extended.		
	
Each	category	is	modeled	separately	to	maintain	the	classifications	even	in	the	
generated	code.	For	example	when	we	need	to	cover	all	the	message	types	we	
can	have	either	single	coverpoint	for	all	messages	or	three	coverpoint	covering	
each	category	of	messages.	Later	is	easy	when	we	analyze	the	results.	Although	it	
may	be	additional	effort	to	write	it	but	let’s	not	forget	we	write	once	but	analyze	
results	multiple	times.	
	

	
Mindmap	2:	All	three	types	of	message	types	and	Control	messages	types	expanded	
	
Lets	expand	one	level	further	into	one	of	control	message	type	called	GotoMin.	
Not	all	the	information	shown	below	is	manually	filled.	Some	of	it	is	manually	
filled	and	some	of	it	is	automatically	generated.		
	

	
Mindmap	3:	GotoMin	messages	types	expanded	with	different	fields	

www.verifsudha.com	 19	

For	example,	for	each	message	types	decoding	information	is	manually	filled	in	
“DECODE”	but	the	TX_SIGNAL_EXPR	and	RX_SIGNAL_EXPR,	which	indicate	how	
to	decode	the	each	message	type,	are	created	automatically	for	all	the	message	
types.	Since	it’s	used	across	multiple	coverage	items	instead	of	creating	every	
time,	it’s	created	once	stored	in	the	data	structure.	
	
Now	let’s	get	into	details	of	how	to	implement	in	python.	It’s	a	simple	dictionary.	
	
Every	message	type	is	key.	It’s	pointing	to	another	dictionary	containing	
following	key-value	pairs.	This	information	has	to	be	filled	manually	referring	to	
the	specifications.	
	
Key	 Description	about	value	stored	
DECODE	 Show	to	how	to	decode	this	message	type	
TX	 List	of	which	DUT	types	can	transmit	this	type	of	message	
RX	 List	of	which	DUT	types	can	receive	this	type	of	message	
RESPONSE	 If	its	request	type,	list	of	all	possible	legal	responses	
REVISION	 List	of	specification	revisions	which	support	this	message	type	
Table	2:	Fields	of	the	basic	message	field	modeling	
	
	

	
Snippet	4:	Python	modeling	for	the	messages	
	

7.4.2 Event	modeling	
	
All	specifications	identify	set	of	key	events.	It’s	interesting	to	cover,	these	key	
events	taking	place	at	different	states.	
	
Let’s	look	at	the	events.	Here	is	high-level	view	of	some	of	the	events	captured.	
	

www.verifsudha.com	 20	

	
Mindmap	4:	Events	implementation	expanded	
	
	
It’s	another	simple	dictionary.	Keys	being	user	defined	event	names.	It	points	to	
another	dictionary	containing	the	information	about	events.	
	
Key		 Description	about	value	stored	
ORIGIN	 Layer	from	which	event	is	emitted	
EVENT	 Actual	event.	Think	of	those	weird	looking	string	names	starting	

and	ending	with	double	underscores	like	Verilog	macro	
Table	3:	Fields	of	the	basic	event	field	modeling	
	
	

	
Snippet	5:	Python	modeling	for	the	events	
	
Those	events	(EVENT	field)	can	be	pointed	to	RTL	design	signals	or	test	bench	
events.	
	

7.4.3 Protocol	sequence	modeling	
	
Here	comes	a	juicy	part.		
	
Simple	tree	data	structure	is	used	to	represent	the	protocol	sequence	as	a	graph.	
Before	we	can	get	to	that,	let’s	briefly	familiarize	ourselves	with	the	power	
negotiation	sequence.			
	

www.verifsudha.com	 21	

Following	diagram	from	specification	shows	the	steps	of	power	negotiation	
sequence.	
	
Step1:	SOURCE	sends	its	capabilities	to	SINK	
	

	
	
	
Step	2:	SINK	selects	the	power	offering	that	suits	it		
	

	
	
	
Step	3:	SOURCE	accepts	the	SINK	request	for	specific	offering	if	it	likes	it	
	

	
	
	
Step	4:	SOURCE	sends	new	power	offering	is	ready.	Deal	is	done	
	

www.verifsudha.com	 22	

	
	
Figure:	4	steps	successful	power	negotiation	sequence	
	
	
At	Step3	above	shows	Accept	scenario,	there	are	multiple	possible	responses.	If	
we	go	back	to	our	specification-modeling	table,	we	can	see,	RESPONSE	indicates	
multiple	possibilities	to	this	sequence.	Above	sequence	shows	only	one	of	them.	
But	to	completely	model	it	we	need	to	capture	all	the	possibilities	and	generate	
the	functional	coverage	for	all	possible	sequences.	
	

	
Snippet	6:	Python	modeling	for	all	possible	RESPONSE	to	Request	message	
	
Lets	look	at	how	the	simple	power	negotiation	sequence	with	all	these	
possibilities	can	be	captured	in	the	tree	data	structure.	
	
This	is	how	the	tree	of	the	protocol	sequences	would	look	like	visualized	in	
Mindmap.	Look	at	the	ordering	of	MESSAGE_TYPE	fields	in	the	node	first.	The	
one	in	middle	(Mindmap	6)	is	the	complete	diagram.	The	one	in	top	(Mindmap	5)	
in	zoom	of	first	half	(2/4	steps)	and	one	in	bottom	(Mindmap	7)	is	the	zoom	of	
second	half(4/4	steps)	of	the	graph.		
	

	
Mindmap	5:	Zoom	of	first	half	of	power	negotiation	sequence	(See	below	for	full	
graph)	
	
	
	

	
Mindmap	6:	Graph	of	power	negotiation	protocol	
possibilities		

First	half	zoom	

Second	half	zoom	

www.verifsudha.com	 23	

	
	
	

	
Mindmap	7:	Zoom	of	second	half	of	power	negotiation	sequence	(see	above	for	full	
graph)	
	
Complete	graph	may	not	be	clearly	visible.	Use	that	only	for	getting	the	big	
picture.	For	details,	I	have	zoomed	them	in	two	parts.	First	part	is	from	start	to	
the	node	where	it	branches	into	three	parts	(first	two	steps).	Second	one	
contains	the	details	about	all	the	three	possible	options.	
	
Now	if	we	expand	this	graph	into	sequences	it	will	results	in	three	unique	
sequences	with	the	first	two	steps	(Step1,	Step2	from	Figure	4))	being	common.	
	
Just	catch	the	visual	view	with	the	following	picture.	I	will	explain	bit	of	details	
below.		
	

	
Mindmap	8:	Possible	3	sequences	from	the	power	negotiation	graph		
	
	
Three	sequences	possible	are:	

• Sequence	1:	Source	Capabilities	=>	GoodCRC	=>	Request	=>	GoodCRC	=>	
Reject	=>	GoodCRC	(6	nodes)	

• Sequence	2:	Source	Capabilities	=>	GoodCRC	=>	Request	=>	GoodCRC	=>	
Wait	=>	GoodCRC	(6	nodes)	

• Sequence	3:	Source	Capabilities	=>	GoodCRC	=>	Request	=>	GoodCRC	=>	
Accept	=>	GoodCRC	=>	PS_RDY	=>	GoodCRC	(8	nodes)	

	
Implementation	of	these	sequences	requires	DUT	type	(SOURCE,	SINK)	to	be	
defined.	Based	on	the	DUT	type	the	direction	of	each	of	these	messages	gets	
decided.	Using	the	DUT	type	appropriate	event	is	picked	from	the	node	
information.	
	
Key		 Description	about	value	stored	
NODE_TYPE	 Type	of	node:	It	can	be	MESSAGE,	EVENT	
MESSAGE_TYPE	 If	the	node	type	is	MESSAGE	what	is	the	type	of	MESSAGE		
SINK	 For	SINK	type	of	device,	the	event	to	be	used		
SOURCE	 For	SOURCE	type	of	device,	the	event	to	be	used	
Table	4:	Fields	used	in	the	nodes	of	the	graphs	
	

www.verifsudha.com	 24	

Ordering	of	steps	of	sequence	is	extracted	from	graphs	and	event	information	for	
implementing	each	step	is	extracted	from	the	node	information	for	functional	
coverage	sequences	generation.	
	
Interesting	part	of	these	graphs	is	not	just	above	sequence	generation,	but	
expanding	these	graphs	to	cover	many	more	cases	algorithmically.	
	
For	example	we	saw	that	every	message	transmitted	requires	a	confirmation	
message	called	GoodCRC.	Now	we	know	wherever	there	is	wait	there	is	generally	
a	timer	associated	to	prevent	infinite	waiting.	For	GoodCRC	there	is	
CRCReceiveTimer.		
	
For	important	sequences	we	can	automatically	add	a	timeout	node	wherever	
there	is	GoodCRC	message	is	involved.	This	allows	controlling	the	quality	of	
verification	on	specific	sequences	by	controlling	the	verbosity	of	coverage	
generated.	Its	demonstrated	in	section	7.5.8.	
	

7.5 Executable	coverage	plan	
	
Now	that	we	have	captured	all	the	specification	information,	let’s	jump	into	the	
how	to	use	the	specification	model	for	functional	coverage	generation.	We	will	
implement	all	the	7	coverage	items	selected	in	Section	7.3.	
	
In	early	items,	we	will	put	in	little	bit	more	explanation.	But	as	we	go	along,	we	
will	reduce	it	as	you	start	getting	familiar.	
	
For	each	item	we	will	briefly	explain	what	the	item	is	suppose	to	cover,	then	
show	the	input	python	code	snippet	for	coverage	item	implementation	and	
generated	functional	coverage.	We	will	briefly	explain	the	APIs	used	in	the	input	
and	point	to	anything	specific	to	be	observed	in	the	covergroups.		
	
Idea	here	is	not	to	explain	everything	detail	of	the	code	but	at	the	same	time	stay	
grounded	to	give	a	flavor	of	code	to	make	concepts	concrete	by	showing	how	you	
can	go	about	implementations.	
	
Covergroups	and	coverpoints	need	additionally	need	what	to	sample	and	when	
to	sample	that	needs	to	be	provided	as	separate	input.	This	can	either	be	tapped	
from	test	bench	variables	or	from	RTL.	This	part	is	skipped	as	we	have	already	
explained	it	in	section	5.5.	
	
	

7.5.1 Global	configuration	
	
To	keep	it	simple	the	coverage	model	is	made	configurable	at	global	level	across	
all	covergroups	for	some	parameters	but	it	can	be	done	easily	at	per	item	level	as	
well.	
	
For	all	the	example	items	we	are	using	following	configuration.	What	it	means?	

www.verifsudha.com	 25	

Covergroups	will	be	generated	for	
• DUT	supporting	only	Revision	2.0	of	specification	(Selected	this	because	

number	of	messages	are	lesser	and	its	easy	show	snippets)	
• DUT	Type	of	SINK	
• Quality	of	coverage	set	to	highest	level	(This	concept	will	be	

demonstrated	in	the	section	7.5.4)	
	

	
Snippet	7:	Global	configuration	
	

7.5.2 Item	1:	Cover	all	transmitted	protocol	messages	
	
Here	we	want	to	cover	all	transmitted	messages	types	possible	across	all	three	
categories	for	specified	DUT_TYPE	and	DUT_REV_SUPPORT.	
	
Input:	Python	code	for	coverage	item	

	
Snippet	8:	Python	implementation	to	cover	all	transmitted	protocol	messages	
	
So,	What’s	happening?	
	
The	API	get_bins_for_matching_msgs	returns	the	bins	per	category	of	messages	
listed	(argument:	[“CONTROL”,	“DATA”,	“EXTENDED”])		that	can	be	
transmitted(argument:	“TX”)	by	DUT	of	the	type	SINK(Global	setting	:	
DUT_TYPE)	and	supporting	the	USB	power	delivery	revision	2.0(Global	setting	
DUT_REV_SUPPORT).	
	
The	API	add_cp_for_msg_types	crates	and	adds	the	coverpoints	and	bins	to	the	
covergroup.	Along	with	bins	per	category,	it	takes	in	what	to	be	sampled	and	
when	to	be	sampled	information	as	well.	
	
Both	of	these	APIs	internally	use	the	object	oriented	functional	and	statistical	
coverage	code	generation	APIs	that	are	part	of	curiosity	framework.		
	
If	you	see	the	generated	output,	there	is	one	covergroup	with	two	coverpoints.	
There	is	coveporint	each	for	CONTROL	and	DATA	message	categories.	Encodings	

www.verifsudha.com	 26	

and	names	of	bins	in	the	generated	output	are	derived	from	the	specification	
information	captured	in	the	snippet	4.	
	
Output:	Covergroup	generated	

	
Snippet	9:	Generated	SystemVerilog	Covergroup	for	all	transmitted	protocol	
messages	
	
Did	you	notice?	Message	categories	passed	includes	“CONTROL”,	“DATA”	and	
“EXTENDED”.	But	in	the	generated	output	we	don’t	see	EXTENDED	messages	–	
Why?	
	
That’s	because	the	USB	Power	delivery	revision	2.0	does	not	support	the	
EXTENDED	message	types.	If	we	switch	the	supported	revision	type	to	3.0	then	
the	EXTENDED	message	types	will	be	added	as	another	coverpoint.	
	
Based	on	the	DUT	type	and	supported	revisions	the	coverpoints	and	bins	will	
automatically	change	for	each	message	categories.	Isn’t	that	something?	
	

7.5.3 Item	2:	All	received	protocol	messages	
	
This	item	selected	to	demonstrate	how	easy	it	is	to	switch	direction	in	the	
coverage	implementation	from	all	transmitted	to	all	received	messages	coverage.	
	
Input:	Python	code	for	coverage	item	

	
Snippet	10:	Python	implementation	to	cover	all	received	protocol	messages	
	

www.verifsudha.com	 27	

Everything	is	same	as	covering	all	transmitted	message	types,	except	direction	
sensitive	information	changed	to	receive.	
	
When	to	sample	changes	to	receive	message	event.	
	
To	API	get_bins_for_matching_msgs	we	change	the	direction	as	RX	
	
The	API	add_cp_for_msg_types	changes	the	information	as	to	be	sampled	to	
qualified	received	message.	
	
Output:	Covergroup	generated	

	
Snippet	11:	Generated	SystemVerilog	Covergroup	for	all	received	protocol	
messages	
	

7.5.4 Item	3:	Some	key	events	during	message	transmission	
	
In	this	item	we	want	to	cover	some	key	events	taking	place	while	different	
messages	types	are	being	transmitted.	Many	of	these	events	lead	to	some	form	
abrupt	termination	of	message	being	transmitted	followed	by	recovery.	It’s	
interesting	to	see	if	DUT	can	recover	correctly	and	operate	normally	again.		
	
We	want	to	introduce	you	to	an	interesting	concept	of	quality	of	functional	
coverage	with	this	item.		
	
Basic	idea	is	depth	and	width	of	functional	coverage	can	be	guided	by	the	
importance	of	particular	feature	to	current	project.	
	
Now	you	can	cover	this	item	at	three	levels	of	details	depending	on	importance	
of	this	feature	for	your	application:	

• LEVEL	3:	For	each	of	the	message	in	all	three	categories	of	messages.	
Results	in	very	comprehensive	coverage		

www.verifsudha.com	 28	

• LEVEL	2:	Any	one	message	in	each	category.	Here	we	are	relaxing	the	
coverage	but	still	covering	each	of	category	

• LEVEL	1:	Any	one	message	across	all	categories.	Completely	relaxed.	
	
	
This	type	of	configurability	can	also	help	easily	change	your	mind	while	closing	
coverage.		One	could	close	on	LEVEL	1	for	initial	milestone	and	then	gradually	
reach	LEVEL	3	based	on	schedule	and	priorities.	
	
Input:	Python	code	for	coverage	item	

	
Snippet	12:	Python	implementation	to	cover	key	events	during	message	
transmission	
	
Output:	With	quality	LEVEL3	
	
Highest	quality.	Cover	all	the	messages	in	all	the	categories.	
	

	
Snippet	13:	Generated	SystemVerilog	Covergroup	for	quality	LEVEL3	

www.verifsudha.com	 29	

	
	
Medium	quality.	Cover	at	least	one	message	per	category.		
	

	
Snippet	14:	Generated	SystemVerilog	Covergroup	for	quality	LEVEL2	
	
	
Lowest	quality.	Cover	at	least	one	message	across	all	three	categories.	

	
Snippet	15:	Generated	SystemVerilog	Covergroup	for	quality	LEVEL1	
	

7.5.5 Item	4:	For	all	transmitted	messages	getting	all	possible	valid	responses	
	
In	the	specification	table	we	had	captured	for	all	the	messages	what	are	the	
possible	valid	responses.	For	example	check	the	Snippet	6	for	information	
captured	for	the	Request	message	type	in	field	RESPONSE.	This	information	is	
utilized	in	the	APIs	below	to	generate	all	the	request	and	response	pairs.	
	
Input:	Python	code	for	coverage	item	

	
Snippet	16:	Python	implementation	to	cover	all	transmitted	messages	getting	all	
possible	valid	responses	

www.verifsudha.com	 30	

Output:	Covergroup	generated	

	
Snippet	17:	Generated	SystemVerilog	Covergroup	for	all	transmitted	messages	
getting	all	possible	valid	responses	
	

7.5.6 Item	5:	For	all	transmitted	messages	unexpected	acknowledgement		
	
The	output	coverage	shown	here	is	of	LEVEL3	quality.	Meaning,	all	possible	
unexpected	responses	are	considered.		
	
One	could	debate	that	crosses	with	some	complex	exclusion	bins	could	also	be	
used.	Remember	we	write	coverage	once	but	analyze	results	multiple	times.	So	
writing	coverage	which	might	be	elaborate	to	write	but	easier	to	analyze	the	
results	the	faster	will	be	well	worth	the	effort.	However	please	note	elaborate	
work	if	you	are	manually	writing	it	but	if	you	are	generating	you	can	make	it	
easily	suit	your	preferences.	
	
Also	any	items	missed	or	specifications	misinterpreted	are	easy	to	fix	in	the	
specification	tables.	It	automatically	reflects	in	generated	code	rather	than	have	
to	painfully	reanalyze	the	intent	to	fix	the	bins	and	exclusion	bins	of	the	crosses.	
	
Input:	Python	code	for	coverage	item	

	
Snippet	18:	Python	implementation	to	cover	all	transmitted	messages	getting	
unexpected	acknowledgement	
	
	

www.verifsudha.com	 31	

Output:	Covergroup	generated	

	
	
	
	

	

	
Snippet	19:	Generated	SystemVerilog	Covergroup	for	all	transmitted	messages	
getting	unexpected	acknowledgement		
	
	
	

(…)	Line	95	to	180:	Bins	of		cp_CONTROL_msg_types	

www.verifsudha.com	 32	

7.5.7 Item	6:	Power	negotiation	sequence	
	
We	have	already	seen	the	power	negotiation	protocol	sequence	and	its	graph	in	
the	Section	7.4.3.	
	
Here	we	will	look	at	its	python	implementation.	We	are	using	simple	tree	data	
structure	to	capture	the	graph.	
	
Input:		Graph	of	power	negotiation	scenarios	
	
This	is	the	tree	data	structure	representation	of	the	protocol	sequence	graph	
shown	in	mindmap	6.	
	

	
Snippet	20:	Python	implementation	for	graph	of	power	negotiation	protocol	
possibilities	
	
Output:	Covergroups	per	sequence		
	
Sequences	can	be	covered	with	the	transition	bins	but	it’s	very	restrictive	in	
terms	of	sampling.	We	cover	the	sequence	with	the	additional	state	machine	like	
glue	logic	in-order	to	use	the	covergroup	construct.	SystemVerilog	assertions	do	
provide	some	level	flexibility	for	sequence	coverage	but	taxing	while	debugging.	
	
A	simple	state	machine	is	generated	as	glue	logic	to	track	each	steps	of	the	
sequence.	This	piece	of	generated	code	is	not	included	to	keep	focus	on	the	
coverage.		
	
Bin	per	step	allows	very	clear	idea	of	how	far	the	sequence	had	progressed	in	
regression.	This	type	of	information	is	difficult	to	find	out	with	the	SystemVerilog	
assertion	based	coverage.	Also	the	state	of	steps	tracking	state	machine	
generated	can	be	added	to	the	waves	along	with	the	RTL	making	the	coverage	
holes	debug	easier	as	well.	
	
Three	sequences	generated	are:	

• power_nego_protocol_SINK_0	(bins	for	8	steps):	Source	Capabilities	=>	
GoodCRC	=>	Request	=>	GoodCRC	=>	Accept	=>	GoodCRC	=>	PS_RDY	=>	
GoodCRC	(8	steps)	

• power_nego_protocol_SINK_1	(bins	for	6	steps):	Source	Capabilities	=>	
GoodCRC	=>	Request	=>	GoodCRC	=>	Wait	=>	GoodCRC	(6	steps)	

• power_nego_protocol_SINK_2	(bins	for	6	steps):	Source	Capabilities	=>	
GoodCRC	=>	Request	=>	GoodCRC	=>	Reject	=>	GoodCRC		
	

www.verifsudha.com	 33	

	
Snippet	21:	Generated	SystemVerilog	Covergroup	for	3	generated	sequence	of	
power	negotiation	protocol	possibilities	(observe	number	of	steps	to	correlate)	
	

7.5.8 Item	7:		Timeout	error	injection	within	power	negotiation	sequence	
	
As	we	had	seen,	for	every	request	or	response	messages	the	GoodCRC	is	
expected	to	confirm	its	successful	reception	by	peer.	There	is	CRCReceiveTimer	
defined	by	the	specifications	which	is	started	when	request	or	response	are	
transmitted	and	stopped	when	the	corresponding	GoodCRC	acknowledgement	is	
received.	
	
Power	negotiation	sequence	is	one	of	the	very	important	sequences	of	the	USB	
power	delivery	protocol.	So	let’s	say	we	decide	to	cover	CRCReceiveTimer	
timeout	at	all	possible	points	in	this	sequence	to	ensure	this	sequence	is	
thoroughly	verified.	
	
Now	this	type	of	comprehensive	coverage	might	be	very	effort	intensive	to	write	
but	with	graphs	it	can	be	created	algorithmically	with	the	following	approach.	
	
	
	

www.verifsudha.com	 34	

Input:	Algorithm	
	
In	the	following	snippet	we	are	traversing	the	graph	of	the	power	negotiation	
sequence	and	wherever	the	GoodCRC	is	node	is	found	we	are	adding	an	
additional	timeout	node	to	parent	node	of	GoodCRC	node.		
	

	
Snippet	22:	Python	implementation	to	algorithmically	add	CRCReceiveTimeout	for	
all	GoodCRC	message	waits	
	
Output:	Mindmap	of	modified	graph	
	
Now	you	can	see	with	every	GoodCRC	node,	a	parallel	node	of	CRCReceiveTimer	
timeout	node	(RED)	has	been	added.	
	

	
Mindmap	9:	After	adding	CRCReceiveTimer	timeout	node	to	power	negotiation	
graph	
	
	
From	this	new	graph	automatically	new	functional	coverage	sequence	can	be	
generated.	
	

	
Mindmap	10:	Sequences	generated	after	adding	CRCReceiveTimer	timeout	node	to	
power	negotiation	graph	
	
	
We	are	just	showing	the	mindmaps	but	code	on	the	similar	lines	as	simple	power	
negotiation	sequence	will	get	generated.	You	can	see	in	the	timeout	sequence	
graphs	there	are	three	sequences	not	ending	in	RED	block	are	normal	power	

www.verifsudha.com	 35	

negotiation	sequence	scenarios	without	timeout	(which	we	had	seen	for	
previously	for	power	negotiation	sequence	item).	The	ones	ending	with	the	red	
block	are	new	ones	added	algorithmically	for	covering	timeout	at	each	stages	of	
the	power	negotiation	sequence.	
	
Now	of-course	based	on	your	quality	goals	you	can	decide	to	add	timeout	to	only	
certain	branches	or	after	certain	depth	in	the	protocol.	Possibilities	are	
unlimited.	For	complex	protocols	this	provides	a	lot	of	flexibility	to	dynamically	
control	the	quality	of	coverage	generated.	
	

8 Conclusion	
	
USB	power	delivery	protocol	provides	a	time	capsule.	Its	overall	complexity	is	
lesser	than	standard	USB	2.0	but	still	relevant	in	the	current	times.	We	choose	it	
for	its	simplicity	and	relevance.	USB	power	delivery	does	exemplify	the	problems	
of	similar	nature	faced	at	higher	complexity	in	other	high-speed	serial	IO	
protocols.		
	
Specification	to	functional	coverage	possibility	has	been	demonstrated	with	this	
case	study.	For	complex	designs	this	approach	can	make	writing	comprehensive	
and	maintainable	functional	coverage	models	easier	and	faster.		
	
Also	being	able	to	dynamically	define	level	of	quality	of	coverage	can	help	tune	it	
to	your	project	priorities.	In	general	by	making	coverage	intent	executable,	it	will	
help	you	churn	higher	quality	of	design	IP	revisions	throughout	its	life	cycle.	
	
	
	
	
	

For	more	information,	questions	or	demo	write	to:	
anand@verifsudha.com	

	
We	can	partner	and	help	you	realize	the	benefits	of		

high-level	specification	model	based		
functional	coverage	generation		

for	your	designs.	
	

www.verifsudha.com	
	

©	Copyright	2018	VerifSudha	Technologies	Pvt.	Ltd.	

	

